文章内容
您当前位置:主页 > 服饰新闻 >

这在对抗疟疾等疾病的过程中具有广阔的应用潜力

来源:浙江艾伦服饰有限公司    时间:2018-10-03    点击:

 
  在1960年第一台激光器发明之后,阿什金立即开始在纽约郊外的贝尔实验室中试验这台新设备。在激光中,光波会连续移动,而不是像平常的白光那样混杂了各种各样的颜色,并向各个方向传播。
 
  阿什金意识到,激光可以作为一种完美的工具,利用光束来移动微小粒子是可能的。他用激光照射微米级的透明小球,并很快就让这些小球动了起来。与此同时,阿什金惊讶地发现,这些小球被拉到了光束最为密集的中间位置。对此的解释是,无论一束激光有多么锐利,它的强度也会从中间向两侧减小。因此,激光施加于粒子上的辐射压也有差别,会迫使它们朝着光束中心的位置移动并稳定下来。
 
  为了保持粒子位于光束的方向上,阿什金增加了一个聚焦激光的强透镜。这些粒子因此被拉向光强度最高的位置。一个光学陷阱诞生了;后来,这种装置被称为光学镊子。
 
  经过多年的努力和多次挫折之后,科学家终于能用这个光学陷阱捕获单个原子。这一过程存在许多困难:一个是光学镊子需要更强的力以抓取原子,另一个问题是原子的热振动。有必要找到一种方法,使原子的运动减慢下来,并将它们放入一个比本句最后的句点还要小得多的区域内。一切问题都在1986年得到解决,光学镊子与其他方法相结合,成功静止并捕获了原子。
 
  在减慢原子速度本身成为一个新研究领域的同时,亚瑟·阿什金发现了光学镊子的一个全新用途——研究生物系统。一个契机的出现使他进入了这一领域。在尝试捕获更小粒子的过程中,阿什金使用了小型花叶病毒的样品。在刚好将样品暴露着放了一夜之后,里面已经充满了到处移动的大颗粒。在显微镜下,阿什金发现这些粒子其实是到处游动的细菌,而当它们靠近激光束时,会被困在光学陷阱当中。不过,阿什金的绿色激光束杀死了细菌,因此要让它们活下来,还需要强度较小的光束。在不可见的红外光下,细菌没有受到损伤,并且能够在光学陷阱中繁殖。
 
  由此,阿什金接下来的研究主要关注众多不同的细菌、病毒和活细胞。他甚至展示了在不破坏细胞膜的情况下,进入细胞内部的可能性。阿什金为光学镊子的新用途开辟了一整个世界。一个重要的突破是对分子马达——在细胞内部进行关键工作的大分子——机械性能的研究。利用光学镊子进行详细绘图的分子马达是一种驱动蛋白,它在微管构成的轨道上“行走”,而微管是细胞骨架的一部分。
 
  在过去几年间,许多研究者在阿什金发明的基础上进行了拓展。目前,光学镊子推动了无数实践应用的开发,使在不触碰研究对象的情况下,利用光学镊子对其进行观察、翻转、剪切、推动和牵引成为可能。在许多实验室中,激光镊子成为了研究生物过程——诸如单个蛋白质、分子马达、DNA和细胞内部活动等——的标准设备。光学全息摄影是最新的开发成果之一,通过该技术,数千个光学镊子可以同时发挥作用,其用途包括将健康细胞与感染细胞分离,这在对抗疟疾等疾病的过程中具有广阔的应用潜力。
 
  该技术的灵感来自一篇描述雷达及其无线电波(长波)的学术文章。然而,将这一概念转化为波长更短的光波十分困难,无论在理论上还是实践上。1985年12月,一篇突破性的论文发表,而这正是多娜·斯崔克兰的第一篇学术文章。她从加拿大搬到了美国的罗切斯特大学,在那里对激光物理学产生了兴趣,因为绿色和红色的光束将实验室装点成了一棵圣诞树,至少在她的导师杰哈·莫罗看来是这样的。现在,科学家已经实现了论文中提到的一项技术——将短激光脉冲的强度提高到前所未有的程度。
 
  激光的产生是通过光子的连锁反应,不断形成更多的光子。这些光子可以通过脉冲释放。在大约60年前激光发明之后,研究人员一直努力尝试制造出更高强度的脉冲。然而,到20世纪80年代中期,人们似乎到达了道路的终点。对于短脉冲而言,在不破坏放大材料的情况下,似乎已经不可能再增加激光的强度了。
 
  CPA技术对于激光技术具有创新意义,它使用一种非常复杂的方法,使非常强而短的脉冲释放成为可能,从而避免了破坏放大材料的风险。它不是直接放大光脉冲,首先及时拉伸,降低其峰值功率。之后脉冲被放大,当它被压缩时,更多的光线就收集在同一个位置——光脉冲变得非常强烈。  CPA技术对于激光技术具有创新意义,它使用一种非常复杂的方法,使非常强而短的脉冲释放成为可能,从而避免了破坏放大材料的风险。它不是直接放大光脉冲,首先及时拉伸,降低其峰值功率。之后脉冲被放大,当它被压缩时,更多的光线就收集在同一个位置——光脉冲变得非常强烈。
 
  斯崔克兰和莫罗的新技术被称为“啁啾脉冲放大”(chirped pulse amplification, CPA),是一种既简单又精巧的技术。他们将短激光脉冲的时间延长,放大它又压缩它。当激光脉冲的时间延长时,它的峰值功率大大降低,因此可以在不破坏放大器的情况下显著放大。接着,激光脉冲的时间压缩,意味着更多的光集中在很小的空间内,从而使脉冲强度极大增强。
 
  斯崔克兰和莫罗花了好几年时间将这一切成功地结合在一起。与往常一样,丰富的实践和概念细节带来了许多困难。例如,激光脉冲的延长需要用到一条新研制的2.5千米长光纤。但是,没有光线出来——光纤在某处破裂了。经过大量的努力,他们发现1.4千米的长度已经足够。一个重大的挑战是同步设备中的各个阶段,使光束的延长和压缩相对应。这个问题在1985年也得到解决,斯崔克兰和莫罗首次证明了他们的精巧设计在实践中也能奏效。
 
  斯崔克兰和莫罗发明的CPA技术变革了激光物理学,成为后来所有高强度激光器的标准,并且为在物理学、化学和医学中的应用开辟了全新的领域。现在,科学家在实验室中已经能制造出最短最强的激光脉冲。
 
  来自飞秒激光仪的短脉冲(图右)比从纳秒激光仪释放的数百万倍长的长脉冲(图左),对材料造成的危害更小,超短和超密度激光脉冲可用于眼部手术、数据存储和制造人体血管的医用支架。  来自飞秒激光仪的短脉冲(图右)


上一篇:参与多个与音频编码及解码国内和国际标准的制定    |   下一篇:时刻铭记诺贝尔奖创建者诺贝尔先生的遗志
Copyright 2001-2016 浙江艾伦服饰有限公司 版权所有